\(\int (d+e x)^2 (a+b \sec ^{-1}(c x)) \, dx\) [57]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 124 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=-\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {b d^3 \csc ^{-1}(c x)}{3 e}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \left (6 c^2 d^2+e^2\right ) \text {arctanh}\left (\sqrt {1-\frac {1}{c^2 x^2}}\right )}{6 c^3} \]

[Out]

1/3*b*d^3*arccsc(c*x)/e+1/3*(e*x+d)^3*(a+b*arcsec(c*x))/e-1/6*b*(6*c^2*d^2+e^2)*arctanh((1-1/c^2/x^2)^(1/2))/c
^3-b*d*e*x*(1-1/c^2/x^2)^(1/2)/c-1/6*b*e^2*x^2*(1-1/c^2/x^2)^(1/2)/c

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {5334, 1582, 1489, 1821, 858, 222, 272, 65, 214} \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \text {arctanh}\left (\sqrt {1-\frac {1}{c^2 x^2}}\right ) \left (6 c^2 d^2+e^2\right )}{6 c^3}-\frac {b d e x \sqrt {1-\frac {1}{c^2 x^2}}}{c}-\frac {b e^2 x^2 \sqrt {1-\frac {1}{c^2 x^2}}}{6 c}+\frac {b d^3 \csc ^{-1}(c x)}{3 e} \]

[In]

Int[(d + e*x)^2*(a + b*ArcSec[c*x]),x]

[Out]

-((b*d*e*Sqrt[1 - 1/(c^2*x^2)]*x)/c) - (b*e^2*Sqrt[1 - 1/(c^2*x^2)]*x^2)/(6*c) + (b*d^3*ArcCsc[c*x])/(3*e) + (
(d + e*x)^3*(a + b*ArcSec[c*x]))/(3*e) - (b*(6*c^2*d^2 + e^2)*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/(6*c^3)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1489

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x
] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1582

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[x^(m + mn*q
)*(e + d/x^mn)^q*(a + c*x^n2)^p, x] /; FreeQ[{a, c, d, e, m, mn, p}, x] && EqQ[n2, -2*mn] && IntegerQ[q] && (P
osQ[n2] ||  !IntegerQ[p])

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 5334

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b
*ArcSec[c*x])/(e*(m + 1))), x] - Dist[b/(c*e*(m + 1)), Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \int \frac {(d+e x)^3}{\sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{3 c e} \\ & = \frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \int \frac {\left (e+\frac {d}{x}\right )^3 x}{\sqrt {1-\frac {1}{c^2 x^2}}} \, dx}{3 c e} \\ & = \frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}+\frac {b \text {Subst}\left (\int \frac {(e+d x)^3}{x^3 \sqrt {1-\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{3 c e} \\ & = -\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \text {Subst}\left (\int \frac {-6 d e^2-e \left (6 d^2+\frac {e^2}{c^2}\right ) x-2 d^3 x^2}{x^2 \sqrt {1-\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{6 c e} \\ & = -\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}+\frac {b \text {Subst}\left (\int \frac {e \left (6 d^2+\frac {e^2}{c^2}\right )+2 d^3 x}{x \sqrt {1-\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{6 c e} \\ & = -\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}+\frac {\left (b d^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{3 c e}+\frac {\left (b \left (6 c^2 d^2+e^2\right )\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{6 c^3} \\ & = -\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {b d^3 \csc ^{-1}(c x)}{3 e}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}+\frac {\left (b \left (6 c^2 d^2+e^2\right )\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{c^2}}} \, dx,x,\frac {1}{x^2}\right )}{12 c^3} \\ & = -\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {b d^3 \csc ^{-1}(c x)}{3 e}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {\left (b \left (6 c^2 d^2+e^2\right )\right ) \text {Subst}\left (\int \frac {1}{c^2-c^2 x^2} \, dx,x,\sqrt {1-\frac {1}{c^2 x^2}}\right )}{6 c} \\ & = -\frac {b d e \sqrt {1-\frac {1}{c^2 x^2}} x}{c}-\frac {b e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2}{6 c}+\frac {b d^3 \csc ^{-1}(c x)}{3 e}+\frac {(d+e x)^3 \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b \left (6 c^2 d^2+e^2\right ) \text {arctanh}\left (\sqrt {1-\frac {1}{c^2 x^2}}\right )}{6 c^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {c^2 x \left (-b e \sqrt {1-\frac {1}{c^2 x^2}} (6 d+e x)+2 a c \left (3 d^2+3 d e x+e^2 x^2\right )\right )+2 b c^3 x \left (3 d^2+3 d e x+e^2 x^2\right ) \sec ^{-1}(c x)-b \left (6 c^2 d^2+e^2\right ) \log \left (\left (1+\sqrt {1-\frac {1}{c^2 x^2}}\right ) x\right )}{6 c^3} \]

[In]

Integrate[(d + e*x)^2*(a + b*ArcSec[c*x]),x]

[Out]

(c^2*x*(-(b*e*Sqrt[1 - 1/(c^2*x^2)]*(6*d + e*x)) + 2*a*c*(3*d^2 + 3*d*e*x + e^2*x^2)) + 2*b*c^3*x*(3*d^2 + 3*d
*e*x + e^2*x^2)*ArcSec[c*x] - b*(6*c^2*d^2 + e^2)*Log[(1 + Sqrt[1 - 1/(c^2*x^2)])*x])/(6*c^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(305\) vs. \(2(110)=220\).

Time = 0.38 (sec) , antiderivative size = 306, normalized size of antiderivative = 2.47

method result size
parts \(\frac {a \left (e x +d \right )^{3}}{3 e}+\frac {b \,e^{2} \operatorname {arcsec}\left (c x \right ) x^{3}}{3}+b e \,\operatorname {arcsec}\left (c x \right ) x^{2} d +b \,\operatorname {arcsec}\left (c x \right ) x \,d^{2}+\frac {b \,\operatorname {arcsec}\left (c x \right ) d^{3}}{3 e}+\frac {b \sqrt {c^{2} x^{2}-1}\, d^{3} \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right )}{3 c e \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \,e^{2} \left (c^{2} x^{2}-1\right )}{6 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac {b \sqrt {c^{2} x^{2}-1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b e \left (c^{2} x^{2}-1\right ) d}{c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \,e^{2} \sqrt {c^{2} x^{2}-1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{6 c^{4} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}\) \(306\)
derivativedivides \(\frac {\frac {a \left (c e x +c d \right )^{3}}{3 c^{2} e}+\frac {b c \,\operatorname {arcsec}\left (c x \right ) d^{3}}{3 e}+b \,\operatorname {arcsec}\left (c x \right ) d^{2} c x +b c e \,\operatorname {arcsec}\left (c x \right ) d \,x^{2}+\frac {b c \,e^{2} \operatorname {arcsec}\left (c x \right ) x^{3}}{3}+\frac {b \sqrt {c^{2} x^{2}-1}\, d^{3} \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right )}{3 e \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \sqrt {c^{2} x^{2}-1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c x}-\frac {b e \left (c^{2} x^{2}-1\right ) d}{c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \,e^{2} \left (c^{2} x^{2}-1\right )}{6 c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac {b \,e^{2} \sqrt {c^{2} x^{2}-1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{6 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}}{c}\) \(317\)
default \(\frac {\frac {a \left (c e x +c d \right )^{3}}{3 c^{2} e}+\frac {b c \,\operatorname {arcsec}\left (c x \right ) d^{3}}{3 e}+b \,\operatorname {arcsec}\left (c x \right ) d^{2} c x +b c e \,\operatorname {arcsec}\left (c x \right ) d \,x^{2}+\frac {b c \,e^{2} \operatorname {arcsec}\left (c x \right ) x^{3}}{3}+\frac {b \sqrt {c^{2} x^{2}-1}\, d^{3} \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right )}{3 e \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \sqrt {c^{2} x^{2}-1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c x}-\frac {b e \left (c^{2} x^{2}-1\right ) d}{c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {b \,e^{2} \left (c^{2} x^{2}-1\right )}{6 c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac {b \,e^{2} \sqrt {c^{2} x^{2}-1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{6 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}}{c}\) \(317\)

[In]

int((e*x+d)^2*(a+b*arcsec(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/3*a*(e*x+d)^3/e+1/3*b*e^2*arcsec(c*x)*x^3+b*e*arcsec(c*x)*x^2*d+b*arcsec(c*x)*x*d^2+1/3*b/e*arcsec(c*x)*d^3+
1/3*b/c/e*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*d^3*arctan(1/(c^2*x^2-1)^(1/2))-1/6*b/c^3*e^2*(c^2*x
^2-1)/((c^2*x^2-1)/c^2/x^2)^(1/2)-b/c^2*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*d^2*ln(c*x+(c^2*x^2-1)
^(1/2))-b/c^3*e*(c^2*x^2-1)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*d-1/6*b/c^4*e^2*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x
^2)^(1/2)/x*ln(c*x+(c^2*x^2-1)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.69 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {2 \, a c^{3} e^{2} x^{3} + 6 \, a c^{3} d e x^{2} + 6 \, a c^{3} d^{2} x + 2 \, {\left (b c^{3} e^{2} x^{3} + 3 \, b c^{3} d e x^{2} + 3 \, b c^{3} d^{2} x - 3 \, b c^{3} d^{2} - 3 \, b c^{3} d e - b c^{3} e^{2}\right )} \operatorname {arcsec}\left (c x\right ) + 4 \, {\left (3 \, b c^{3} d^{2} + 3 \, b c^{3} d e + b c^{3} e^{2}\right )} \arctan \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + {\left (6 \, b c^{2} d^{2} + b e^{2}\right )} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (b c e^{2} x + 6 \, b c d e\right )} \sqrt {c^{2} x^{2} - 1}}{6 \, c^{3}} \]

[In]

integrate((e*x+d)^2*(a+b*arcsec(c*x)),x, algorithm="fricas")

[Out]

1/6*(2*a*c^3*e^2*x^3 + 6*a*c^3*d*e*x^2 + 6*a*c^3*d^2*x + 2*(b*c^3*e^2*x^3 + 3*b*c^3*d*e*x^2 + 3*b*c^3*d^2*x -
3*b*c^3*d^2 - 3*b*c^3*d*e - b*c^3*e^2)*arcsec(c*x) + 4*(3*b*c^3*d^2 + 3*b*c^3*d*e + b*c^3*e^2)*arctan(-c*x + s
qrt(c^2*x^2 - 1)) + (6*b*c^2*d^2 + b*e^2)*log(-c*x + sqrt(c^2*x^2 - 1)) - (b*c*e^2*x + 6*b*c*d*e)*sqrt(c^2*x^2
 - 1))/c^3

Sympy [A] (verification not implemented)

Time = 3.53 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.84 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=a d^{2} x + a d e x^{2} + \frac {a e^{2} x^{3}}{3} + b d^{2} x \operatorname {asec}{\left (c x \right )} + b d e x^{2} \operatorname {asec}{\left (c x \right )} + \frac {b e^{2} x^{3} \operatorname {asec}{\left (c x \right )}}{3} - \frac {b d^{2} \left (\begin {cases} \operatorname {acosh}{\left (c x \right )} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- i \operatorname {asin}{\left (c x \right )} & \text {otherwise} \end {cases}\right )}{c} - \frac {b d e \left (\begin {cases} \frac {\sqrt {c^{2} x^{2} - 1}}{c} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\\frac {i \sqrt {- c^{2} x^{2} + 1}}{c} & \text {otherwise} \end {cases}\right )}{c} - \frac {b e^{2} \left (\begin {cases} \frac {x \sqrt {c^{2} x^{2} - 1}}{2 c} + \frac {\operatorname {acosh}{\left (c x \right )}}{2 c^{2}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- \frac {i c x^{3}}{2 \sqrt {- c^{2} x^{2} + 1}} + \frac {i x}{2 c \sqrt {- c^{2} x^{2} + 1}} - \frac {i \operatorname {asin}{\left (c x \right )}}{2 c^{2}} & \text {otherwise} \end {cases}\right )}{3 c} \]

[In]

integrate((e*x+d)**2*(a+b*asec(c*x)),x)

[Out]

a*d**2*x + a*d*e*x**2 + a*e**2*x**3/3 + b*d**2*x*asec(c*x) + b*d*e*x**2*asec(c*x) + b*e**2*x**3*asec(c*x)/3 -
b*d**2*Piecewise((acosh(c*x), Abs(c**2*x**2) > 1), (-I*asin(c*x), True))/c - b*d*e*Piecewise((sqrt(c**2*x**2 -
 1)/c, Abs(c**2*x**2) > 1), (I*sqrt(-c**2*x**2 + 1)/c, True))/c - b*e**2*Piecewise((x*sqrt(c**2*x**2 - 1)/(2*c
) + acosh(c*x)/(2*c**2), Abs(c**2*x**2) > 1), (-I*c*x**3/(2*sqrt(-c**2*x**2 + 1)) + I*x/(2*c*sqrt(-c**2*x**2 +
 1)) - I*asin(c*x)/(2*c**2), True))/(3*c)

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.61 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {1}{3} \, a e^{2} x^{3} + a d e x^{2} + {\left (x^{2} \operatorname {arcsec}\left (c x\right ) - \frac {x \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c}\right )} b d e + \frac {1}{12} \, {\left (4 \, x^{3} \operatorname {arcsec}\left (c x\right ) - \frac {\frac {2 \, \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c^{2} {\left (\frac {1}{c^{2} x^{2}} - 1\right )} + c^{2}} + \frac {\log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}{c^{2}} - \frac {\log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} - 1\right )}{c^{2}}}{c}\right )} b e^{2} + a d^{2} x + \frac {{\left (2 \, c x \operatorname {arcsec}\left (c x\right ) - \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right ) + \log \left (-\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )\right )} b d^{2}}{2 \, c} \]

[In]

integrate((e*x+d)^2*(a+b*arcsec(c*x)),x, algorithm="maxima")

[Out]

1/3*a*e^2*x^3 + a*d*e*x^2 + (x^2*arcsec(c*x) - x*sqrt(-1/(c^2*x^2) + 1)/c)*b*d*e + 1/12*(4*x^3*arcsec(c*x) - (
2*sqrt(-1/(c^2*x^2) + 1)/(c^2*(1/(c^2*x^2) - 1) + c^2) + log(sqrt(-1/(c^2*x^2) + 1) + 1)/c^2 - log(sqrt(-1/(c^
2*x^2) + 1) - 1)/c^2)/c)*b*e^2 + a*d^2*x + 1/2*(2*c*x*arcsec(c*x) - log(sqrt(-1/(c^2*x^2) + 1) + 1) + log(-sqr
t(-1/(c^2*x^2) + 1) + 1))*b*d^2/c

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6416 vs. \(2 (110) = 220\).

Time = 2.89 (sec) , antiderivative size = 6416, normalized size of antiderivative = 51.74 \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^2*(a+b*arcsec(c*x)),x, algorithm="giac")

[Out]

-1/6*(6*b*c^3*d*e*x^2*(1/(c^2*x^2) - 1)*arccos(1/(c*x))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4
*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) + 6*a*c^3*d*e*x^2*(1/(c^2*x^2)
 - 1)/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2
*x^2) - 1)^3/(1/(c*x) + 1)^6) + 18*b*c^3*d*e*x^2*(1/(c^2*x^2) - 1)^2*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2
) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*
(1/(c*x) + 1)^2) + 18*a*c^3*d*e*x^2*(1/(c^2*x^2) - 1)^2/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^
4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) + 18*b*c^3*d
*e*x^2*(1/(c^2*x^2) - 1)^3*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2
) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) + 18*a*c^3*d*e*x^2*(1/(c^
2*x^2) - 1)^3/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^
4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) + 6*b*c^3*d*e*x^2*(1/(c^2*x^2) - 1)^4*arccos(1/(c*x))/
((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2)
 - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6) + 6*b*c^2*d*e*x*sqrt(-1/(c^2*x^2) + 1)/(c^4 + 3*c^4*(1/(c^2*x^2) - 1
)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) + 6*a
*c^3*d*e*x^2*(1/(c^2*x^2) - 1)^4/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(
1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6) - 6*b*c^2*d^2*arccos(1/(c*x))/(c^4
+ 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^
3/(1/(c*x) + 1)^6) + 6*b*c^2*d^2*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)
/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 6*b*
c^2*d^2*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*
(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 18*b*c^2*d*e*x*(-1/(c^2*x^2)
+ 1)^(3/2)/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(
1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) - 6*a*c^2*d^2/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1
)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 6*b*c*d*e*arccos(
1/(c*x))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(
c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 6*b*c^2*d^2*(1/(c^2*x^2) - 1)*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) -
1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(
c*x) + 1)^2) + 18*b*c^2*d^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4*(1/
(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x)
+ 1)^6)*(1/(c*x) + 1)^2) - 18*b*c^2*d^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^4
 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)
^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) + 18*b*c^2*d*e*x*(1/(c^2*x^2) - 1)^2*sqrt(-1/(c^2*x^2) + 1)/((c^4 + 3*c^4
*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c
*x) + 1)^6)*(1/(c*x) + 1)^4) - 6*a*c*d*e/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) -
 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 6*a*c^2*d^2*(1/(c^2*x^2) - 1)/((c^4 + 3*c^4
*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c
*x) + 1)^6)*(1/(c*x) + 1)^2) - 2*b*e^2*arccos(1/(c*x))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*
(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 18*b*c*d*e*(1/(c^2*x^2) - 1)*
arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 +
c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) + 6*b*c^2*d^2*(1/(c^2*x^2) - 1)^2*arccos(1/(c*x))/((
c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) -
 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) + b*e^2*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/(c^4 + 3*c^4*(1
/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x)
 + 1)^6) + 18*b*c^2*d^2*(1/(c^2*x^2) - 1)^2*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4*(1/(c
^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) +
1)^6)*(1/(c*x) + 1)^4) - b*e^2*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(
1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 18*b*c
^2*d^2*(1/(c^2*x^2) - 1)^2*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(
c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) +
1)^4) + 6*b*c^2*d*e*x*(1/(c^2*x^2) - 1)^3*sqrt(-1/(c^2*x^2) + 1)/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)
^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6) - 2
*a*e^2/(c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^
2*x^2) - 1)^3/(1/(c*x) + 1)^6) - 18*a*c*d*e*(1/(c^2*x^2) - 1)/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2
+ 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) + 6*a*
c^2*d^2*(1/(c^2*x^2) - 1)^2/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*
x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) + 6*b*e^2*(1/(c^2*x^2) - 1)*arccos(1/(c*
x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*
x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) - 18*b*c*d*e*(1/(c^2*x^2) - 1)^2*arccos(1/(c*x))/((c^4 + 3*c^4*(
1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x
) + 1)^6)*(1/(c*x) + 1)^4) + 6*b*c^2*d^2*(1/(c^2*x^2) - 1)^3*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(
1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x)
 + 1)^6) + 3*b*e^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4*(1/(c^2*x^2)
 - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(
1/(c*x) + 1)^2) + 6*b*c^2*d^2*(1/(c^2*x^2) - 1)^3*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4
*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c
*x) + 1)^6)*(1/(c*x) + 1)^6) - 3*b*e^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^4
+ 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^
3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) - 6*b*c^2*d^2*(1/(c^2*x^2) - 1)^3*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x)
 - 1))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c
^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6) + 2*b*e^2*sqrt(-1/(c^2*x^2) + 1)/((c^4 + 3*c^4*(1/(c^2*x^2) -
 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/
(c*x) + 1)) + 6*a*e^2*(1/(c^2*x^2) - 1)/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) -
 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^2) - 18*a*c*d*e*(1/(c^2*x^2) -
1)^2/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2
*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) + 6*a*c^2*d^2*(1/(c^2*x^2) - 1)^3/((c^4 + 3*c^4*(1/(c^2*x^2) -
1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(
c*x) + 1)^6) - 6*b*e^2*(1/(c^2*x^2) - 1)^2*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3
*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) - 6*b*c*d
*e*(1/(c^2*x^2) - 1)^3*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) -
1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6) + 3*b*e^2*(1/(c^2*x^2) - 1)^2
*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^
2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) - 3*b*e^2*(1/(c^2*x^
2) - 1)^2*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c
^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) - 6*a*e^2*(
1/(c^2*x^2) - 1)^2/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4
 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^4) - 6*a*c*d*e*(1/(c^2*x^2) - 1)^3/((c^4 + 3*c^4*(1/
(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x)
+ 1)^6)*(1/(c*x) + 1)^6) + 2*b*e^2*(1/(c^2*x^2) - 1)^3*arccos(1/(c*x))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x
) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^
6) + b*e^2*(1/(c^2*x^2) - 1)^3*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/
(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x
) + 1)^6) - b*e^2*(1/(c^2*x^2) - 1)^3*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^4 + 3*c^4*(1/(c^2*x^2
) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*
(1/(c*x) + 1)^6) - 2*b*e^2*(1/(c^2*x^2) - 1)^2*sqrt(-1/(c^2*x^2) + 1)/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x)
 + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^5
) + 2*a*e^2*(1/(c^2*x^2) - 1)^3/((c^4 + 3*c^4*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 3*c^4*(1/(c^2*x^2) - 1)^2/(1
/(c*x) + 1)^4 + c^4*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6)*(1/(c*x) + 1)^6))*c

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^2 \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int \left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )\,{\left (d+e\,x\right )}^2 \,d x \]

[In]

int((a + b*acos(1/(c*x)))*(d + e*x)^2,x)

[Out]

int((a + b*acos(1/(c*x)))*(d + e*x)^2, x)